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Abstract

This paper proposes a novel copula-based local Kendall’s tau framework to uncover richer

nonlinear local dependence between two financial return series. This framework nests the con-

cepts of global dependence, tail dependence and local dependence. Closed form solutions of local

Kendall’s tau in terms of copula link local dependence with their global dependence structure

together, providing a generalized framework for investigating dependence between two return se-

ries. We further extend the copula-based local dependence framework to Spearman’s rho. Using

this framework, we draw the local Kendall’s tau surfaces in different quadrants for some common

used bivariate Archimedean copulas. Finally, we demonstrate the advantages of copula-based

local Kendall’s tau relative to global Kendall’s tau with stock market data.
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1 Introduction

Dependence measures are widely used in statistics and finance. One of the most important appli-

cations of dependence measure is studying the relationship between different financial return series

(see, for example, Forbes and Rigobon, 2002; Rodriguez, 2007; Okimoto, 2008; Asimit et al., 2016),

which is helpful for financial risk management. The rank dependence coefficients, e.g., Kendall’s

tau (Kendall, 1938) & Spearman’s rho (Spearman, 1904, 1906), Pearson’s correlation coefficient

and parametric copulas (Embrechts et al., 2002) are the most widely used dependence measures

for quantifying dependence between different financial return series. It is known that Kendall’s tau

and Spearman’s rho can be expressed via copula technology (Schweizer and Wolff, 1981), thus they

are also named as copula-based dependence measures. Now, copula theory and rank dependence

measures are widely used in a variety of applications, especially in finance (see, Cherubini et al.,

2004; McNeil et al., 2005; Patton, 2006, 2012).

It is known that, traditional dependence measures, except for tail dependence coefficients, all

analyze dependence between two random variables from a global perspective. For instance, in the

field of finance, copula technology is widely used in modeling the global dependence structure be-

tween different return series (Rodriguez, 2007; Okimoto, 2008; Chollete et al., 2009; Ning, 2010).

However, can global dependence between two variables represent local dependence in the regions

that we are interested in? The answer is no. For example, we usually use global Pearson’s corre-

lation coefficient to analyze the global correlation between different stock markets, whereas some

researches show that the conditional correlation increase in bear market, while it does not seem

to increase in bull market, which implies an asymmetric correlation pattern between bear market

and bull market (Longin and Solnik, 2001; Ang and Chen, 2002; Campbell et al., 2008; Chung et

al. 2019). Therefore, if global dependence measures are applied in studying the dependence be-

tween two stock markets, they might cover much useful local dependence information, such as the

changing trend of the local dependence as the increase or decrease of returns, and the symmetric

or asymmetric dependence patterns between bear market and bull market. These information is

useful for helping people deepen their understanding of the relationship between two stock markets.

The aim of this paper is to propose a novel copula-based local dependence framework to uncover

richer local dependence information between two financial return series.

To our knowledge, the topic of local dependence has already attracted researchers’ attention.

There are several definitions of local dependence. Some of them are extensions of Pearson’s linear

correlation. For example, Bjerve and Doksum (1993) and Doksum et al. (1994) study the corre-

lation curve generated by local dependence function on the condition of X = x, which reveals the

changing tendency of local Pearson’s correlation coefficient as the increase or decrease of X = x.

Longin and Solnik (2001) and Ang and Chen (2002) propose exceedance correlation to investigate

the asymmetry characteristics between different equity markets, which can also be regarded as

a local version of Pearson’s correlation coefficient. Tjøstheim and Hufthammer (2013) propose a
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measure named local Gaussian correlation, which is based on the estimation of the local Gaussian

densities around any selected points (Hjort and Jones 1996). They use this measure to draw lo-

cal Gaussian correlation map for two continuous variables, which can help people to visualize the

changing characteristics of the local dependence in extremely small regions intuitively. In addition,

researchers also propose some nonlinear local dependence measures. For example, Mari and Kotz

(2001, p.172) and Balakrishnan and Lai (2009, p.169) introduce a local version of Kendall’s tau

and Spearman’s rho, which restrict the calculation region of Kendall’s tau and Spearman’s rho to

a region around certain point. Other nonlinear local dependence measures can be found in Sibuya

(1960), Holland and Wang (1987), Oakes (1989), Jones (1996; 1998; 2003) and Li et al. (2014).

Above local dependence measures define local dependence from different perspectives respec-

tively, among which Longin and Solnik’s (2001) exceedance correlation is a popular tool for mea-

suring the linear symmetric and asymmetric correlation between different return series (see, for

example, Okimoto, 2008; Kang et al., 2010). But the dependence between return series is actually

a kind of nonlinear relationship. Therefore, using linear correlation coefficient to measure the de-

pendence between different returns may be misleading because it may not cover the whole range

of dependence from -1 to +1 (Cherubini, 2004, p.42). Moreover, it cannot be estimated via copula

directly. Kendall’s tau is a rank-based dependence measure, which is suitable for measuring non-

linear relationship. Although Manner (2010) introduces the concept of exceedance Kendall’s tau

and provides its copula-based expressions, these expressions are based on conditional expectation,

which cannot be evaluated analytically. In addition, exceedance Kendall’s tau is defined along the

main diagonal.1 Such definition, on the one hand, is not appropriate for measuring the negative

dependence between return series, on the other hand, definition along the diagonal is too restrictive.

In this paper, we propose a general copula-based local Kendall’s tau framework which could

uncover richer local dependence information between two return series via their dependence struc-

ture (copula) directly. Specifically, this paper makes the following contributions to the existing

literature: First, before proposing the copula-based local Kendall’s tau framework, we extend ex-

ceedance Kendall’s tau to the more generalized local Kendall’s tau framework. Its basic principle is

similar to the exceedance correlation proposed by Longin and Solnik (2001) and the reverse thresh-

old correlation proposed by Christoffersen and Langlois (2013). However, the threshold parameters

of exceedance correlation and reverse threshold correlation are all defined on diagonals. We release

such restrictions, and extend them to a wider dependence framework whose threshold parameters

are not on diagonals anymore. Global dependence and tail dependence become two special cases of

this general framework. Second, we propose the copula-based formulas of different local Kendall’s

tau, which is the most important contribution of our work. Unlike Manner’s (2010) copula-based

formulas of exceedance Kendall’s tau, our formulas of local Kendall’s tau are closed form solutions

in terms of copula. Using copula function to calculate local Kendall’s tau is appealing, because it

could link local dependence between two variables with their global dependence structure together,

1 The concept of main diagonal is introduced in the introduction of Figure 1.
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which means that we can directly estimate the local dependence between two variables via the

copula function between them. It is well-known that Schweizer and Wolff (1981) proposed the

mathematical formula between global Kendall’s tau and copula function. Our formulas provide a

generalized framework for investigating richer dependence information than Schweizer and Wolff’s

(1981) formula. Third, based on the copula-based local Kendall’s tau framework, we further de-

velop a new class of tail dependence coefficient measuring rank-based dependence in different tails,

via which we can study the rank-based tail dependence of a copula function. Fourth, we extend

the copula-based local dependence framework to Spearman’s rho.

In the empirical section of this article, we illustrate the advantages of copula-based local

Kendall’s tau relative to global Kendall’s tau with stock market data. The results indicate that

copula-based local Kendall’s tau could uncover richer dependence information than global Kendall’s

tau, which could deepen our understanding of the dependence between two return series. Specif-

ically, we use copula-based local Kendall’s tau and global Kendall’s tau respectively to study co-

movement between U.S. and other five international stock markets, and get following conclusions:

first, global Kendall’s tau might overestimate or underestimate the degree of co-movement between

two stock markets when both of them are in boom situation or crash situation; second, not only can

copula-based local Kendall’s tau characterize the symmetric and asymmetric co-movement patterns

between two stock markets, but also the “V type” and “inversed V type” co-movement patterns,

whereas global Kendall’s tau could not.

The rest of the article is organized as follows. In Section 2, we introduce the copula-based local

Kendall’s tau framework and some of its extensions. In Section 3, we draw and compare theoretical

and empirical local Kendall’s tau surfaces for some common used Archimedean copulas. In Section

4, we illustrate the advantages of copula-based local Kendall’s tau relative to global Kendall’s tau

with stock market data. Section 5 concludes.

2 The Copula-based Local Dependence Framework

In this section, we first introduce the concept of the general local dependence framework based on

Kendall’s tau and its non-parametric estimation approach, then we focus on introducing its para-

metric copula-based estimation approach. Next, as extension of the copula-based local Kendall’s

tau framework, we develop a new class of tail dependence measure. Finally, we extend the copula-

based local dependence framework to Spearman’s rho.

2.1 Definition of the general local Kendall’s tau framework

It is known that Kendall’s tau (Kendall, 1938) is the most widely used rank correlation coefficient.

In the past literatures, scholars usually use global Kendall’s tau to analyze global dependence be-

tween variables. The global Kendall’s tau is defined by (see, Nelsen, 2006; Lehmann and D’Abrera,
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2006): Let (x1, y1), (x2, y2), ..., (xn, yn) be random samples from the n observations of the vector

pair (X,Y ) , then we can get C2
n distinct pairs (xi, yi) and (xj , yj) from the global sample. Let c

denotes the number of concordant pairs and d denotes the number of discordant pairs, then global

Kendall’s tau is described by the probability of the concordant pairs minus the probability of the

discordant pairs in global sample

τ(X,Y ) =
Number of concordant pairs−Number of discordant pairs

Number of total pairs
=
c− d
c+ d

=
c− d
C2
n

Nelsen (2006) introduces the population version of global Kendall’s tau for vector (X,Y ) with

continuous random variables: Let (X1, Y1) and (X2, Y2) be two independent realizations of a joint

distribution, then global Kendall’s tau is defined as

τ (X,Y ) = P [(X1 −X2) (Y1 − Y2) > 0]− P [(X1 −X2) (Y1 − Y2) < 0] (1)

As we know, global Kendall’s tau just focuses on global observations. In the following, we

propose a general local dependence framework based on Kendall’s tau, which consists of four

different types of local dependence measure.

Definition 1. (The general Local Kendall’s tau framework) Let X and Y be two

independent and continuous random variables following different distributions. Local Kendall’s tau

is defined as

τKendallUU (X,Y ; p, q) = τKendallUU (X,Y | ΩUU : X ≥ F−1X (p), Y ≥ F−1Y (q)) (2)

τKendallUL (X,Y ; p, q) = τKendallUL (X,Y | ΩUL : X ≥ F−1X (p), Y ≤ F−1Y (q)) (3)

τKendallLU (X,Y ; p, q) = τKendallLU (X,Y | ΩLU : X ≤ F−1X (p), Y ≥ F−1Y (q)) (4)

τKendallLL (X,Y ; p, q) = τKendallLL (X,Y | ΩLL : X ≤ F−1X (p), Y ≤ F−1Y (q)) (5)

where FX(·) and FY (·) are marginals with quantiles p and q, 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1. ΩUU , ΩUL,

ΩLU and ΩLL are conditional events for different local Kendall’s tau.

From the above local dependence framework, we can see that they are four types of conditional

Kendall’s tau. Their conditional events restrict the scales of different regions via two quantiles.

When p→ 0 and q → 0 for ΩUU , p→ 0 and q → 1 for ΩUL, p→ 1 and q → 0 for ΩLU , p→ 1 and

q → 1 for ΩLL, above conditional dependence measures become the global dependence measure.

When p → 1 and q → 1 for ΩUU , p → 1 and q → 0 for ΩUL, p → 0 and q → 1 for ΩLU , p → 0

and q → 0 for ΩLL, they become four classes of tail dependence measures. Therefore, this local

dependence framework is actually a dependence benchmarking, which nests global dependence

measure and tail dependence measure. In addition, Manner’s (2010) exceedance Kendall’s tau is

a special case of this framework along the main diagonal. If replacing Kendall’s tau by Pearson’s

linear correlation coefficient, when p = 1 − q for upper-lower and lower-upper local dependence
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measures, the reverse threshold correlation introduced by Christoffersen and Langlois (2013) also

become its special case.

To further illustrate the concept of this framework, we use U = FX(X) and V = FY (Y ) to

transform the original random variables X and Y to their corresponding i.i.d. variables U and

V respectively. We use Clayton copula with parameter 2 (θC = 2) to generate 5000 random

data,2 and put them into the two-dimensional coordinate based on U-V panel (see Figure 1). The

dark-colored (red) parts in Figure 1 represent regions for calculating upper-upper local Kendall’s

tau τKendallUU (U, V ; 0.8, 0.8), upper-lower local Kendall’s tau τKendallUL (U, V ; 0.8, 0.2), lower-upper lo-

cal Kendall’s tau τKendallLU (U, V ; 0.2, 0.8) and lower-lower local Kendall’s tau τKendallLL (U, V ; 0.2, 0.2)

respectively. The light-colored (yellow) parts represent regions for calculating upper-upper local

Kendall’s tau τKendallUU (U, V ; 0.4, 0.4), upper-lower local Kendall’s tau τKendallUL (U, V ; 0.7, 0.3), lower-

upper local Kendall’s tau τKendallLU (U, V ; 0.3, 0.6) and lower-lower local Kendall’s tau τKendallLL (U,

V ; 0.4, 0.3) respectively. The whole sample in the coordinate is used for calculating global Kendall’s

tau. We can see that the 5000 random data generated by bivariate Clayton copula exhibit obvi-

ous asymmetric characteristic in upper-upper and lower-lower regions. This local Kendall’s tau

framework can be used for uncovering whether there exist differences among local dependence in

different regions.

Figure 1. Regions for different local Kendall’s tau. The line from (0,0) to (1,1) is the main diagonal.
The line from (0,1) to (1,0) is the minor diagonal. The dark-colored (red) parts represent four symmetric
regions along the main and minor diagonals, while the light-colored (yellow) parts represent four different
asymmetric regions along the main and minor diagonals. These regions are defined by conditional events in
expressions (2)(3)(4)(5) respectively.

2.2 Non-parametric estimators of local Kendall’s tau framework

Before proposing the copula-based estimation approach of the local Kendall’s tau framework, we

first introduce the non-parametric estimators of different local Kendall’s tau. As we know, the global

Kendall’s tau is actually the expectation of its kernel function h((X1, Y1), (X2, Y2)) = sign(X1 −
2 The expression of Clayton copula can be found in section 3.
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X2) · sign(Y1 − Y2): τ = E {sign(X1 −X2) · sign(Y1 − Y2)}. Its consistent estimator is defined by

the U-statistic (Kruskal, 1958; Randles and Wolfe, 1991)

τ̂(X,Y ) =
1

M

n−1∑
i=1

n∑
j=i+1

{
sign(Xi −Xj) · sign(Yi − Yj)

}
The sign function equals +1, 0 and -1 respectively according to whether its argument is positive,

zero or negative. n is the number of observations. M = C2
n is the number of total observation

pairs.

In fact, the local Kendall’s tau defined in Section 2.1 belongs to a class of conditional Kendall’s

tau, thus different local Kendall’s tau can be estimated as the expectations of their kernel function

under different conditional events

τKendallUU (X,Y ; p, q) = E
{
sign(X1 −X2) · sign(Y1 − Y2) | Ω12

UU

}
= E

{
sign(X1 −X2) · sign(Y1 − Y2) · I(Ω12

UU )
}
/Pr(Ω12

UU )

τKendallUL (X,Y ; p, q) = E
{
sign(X1 −X2) · sign(Y1 − Y2) | Ω12

UL

}
= E

{
sign(X1 −X2) · sign(Y1 − Y2) · I(Ω12

UL)
}
/Pr(Ω12

UL)

τKendallLU (X,Y ; p, q) = E
{
sign(X1 −X2) · sign(Y1 − Y2) | Ω12

LU

}
= E

{
sign(X1 −X2) · sign(Y1 − Y2) · I(Ω12

LU )
}
/Pr(Ω12

LU )

τKendallLL (X,Y ; p, q) = E
{
sign(X1 −X2) · sign(Y1 − Y2) | Ω12

LL

}
= E

{
sign(X1 −X2) · sign(Y1 − Y2) · I(Ω12

LL)
}
/Pr(Ω12

LL)

where (Xk, Yk), k = 1, 2, are observations from the distribution of (X,Y ); Ω12
UU : Xk ≥ F−1X (p)

⋂
Yk ≥

F−1Y (q), Ω12
UL : Xk ≥ F−1X (p)

⋂
Yk ≤ F−1Y (q), Ω12

LU : Xk ≤ F−1X (p)
⋂
Yk ≥ F−1Y (q) and Ω12

LL : Xk ≤
F−1X (p)

⋂
Yk ≤ F−1Y (q), k = 1, 2, denote conditional events that two observations are restricted in

different regions. I(A) denotes the indicator function with argument A. When A is true, I(A) = 1,

otherwise, I(A) = 0. Pr(A) denotes the probability of event A. We define Pr(Ω12
UU ) = µUU ,

Pr(Ω12
UL) = µUL, Pr(Ω12

LU ) = µLU and Pr(Ω12
LL) = µLL, respectively.

Following Martin and Betensky (2005), we propose the consistent estimators of τKendallUU , τKendallUL ,

τKendallLU and τKendallLL respectively, which are expressed by the ratio of two U-statistics

τ̂KendallUU (X,Y ; p, q) =
1

MUU

n−1∑
i=1

n∑
j=i+1

{
sign(Xi −Xj) · sign(Yi − Yj) · I(Ωij

UU )
}

=

∑n−1
i=1

∑n
j=i+1{sign(Xi −Xj) · sign(Yi − Yj) · I(Ωij

UU )}
C2
n

/

(
MUU

C2
n

)
=
UUU

UMUU

τ̂KendallUL (X,Y ; p, q) =
1

MUL

n−1∑
i=1

n∑
j=i+1

{
sign(Xi −Xj) · sign(Yi − Yj) · I(Ωij

UL)
}
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=

∑n−1
i=1

∑n
j=i+1{sign(Xi −Xj) · sign(Yi − Yj) · I(Ωij

UL)}
C2
n

/

(
MUL

C2
n

)
=
UUL

UMUL

τ̂KendallLU (X,Y ; p, q) =
1

MLU

n−1∑
i=1

n∑
j=i+1

{
sign(Xi −Xj) · sign(Yi − Yj) · I(Ωij

LU )
}

=

∑n−1
i=1

∑n
j=i+1{sign(Xi −Xj) · sign(Yi − Yj) · I(Ωij

LU )}
C2
n

/

(
MLU

C2
n

)
=
ULU

UMLU

τ̂KendallLL (X,Y ; p, q) =
1

MLL

n−1∑
i=1

n∑
j=i+1

{
sign(Xi −Xj) · sign(Yi − Yj) · I(Ωij

LL)
}

=

∑n−1
i=1

∑n
j=i+1{sign(Xi −Xj) · sign(Yi − Yj) · I(Ωij

LL)}
C2
n

/

(
MLL

C2
n

)
=
ULL

UMLL

where Ωij
UU : Xk ≥ F−1X (p)

⋂
Yk ≥ F−1Y (q), Ωij

UL : Xk ≥ F−1X (p)
⋂
Yk ≤ F−1Y (q), Ωij

LU : Xk ≤ F−1X (p)⋂
Yk ≥ F−1Y (q) and Ωij

LL : Xk ≤ F−1X (p)
⋂
Yk ≤ F−1Y (q), k = i, j, denote conditional events that two

observations are restricted in different regions. MUU , MUL, MLU and MLL represent the number

of observation pairs in different regions, which are calculated by MUU =
∑n−1

i=1

∑n
j=i+1 I(Ωij

UU ),

MUL =
∑n−1

i=1

∑n
j=i+1 I(Ωij

UL), MLU =
∑n−1

i=1

∑n
j=i+1 I(Ωij

LU ) and MLL =
∑n−1

i=1

∑n
j=i+1 I(Ωij

LL)

respectively. UMUU , UMUL, UMLU and UMLL are U-statistics with expected values µUU , µUL, µLU and

µLL respectively. UUU , UUL, ULU and ULL are another kind of U-statistics with expected values

τKendallUU µUU , τKendallUL µUL, τKendallLU µLU and τKendallLL µLL.

Applying the one-sample U-statistic theorem (Randles and Wolfe 1991),
√
n(τ̂KendallUU −τKendallUU ),

√
n(τ̂KendallUL − τKendallUL ),

√
n(τ̂KendallLU − τKendallLU ) and

√
n(τ̂KendallLL − τKendallLL ) are asymptotically

N(0, 4ζUU/µ
2
UU ), N(0, 4ζUL/µ

2
UL), N(0, 4ζLU/µ

2
LU ), N(0, 4ζLL/µ

2
LL) provided that

ζUU = E {sign(X1 −X2) · sign(Y1 − Y2)

× sign(X1 −X3) · sign(Y1 − Y3) · I(Ω12
UU ∧ Ω13

UU )} − (τKendallUU µUU )2

ζUL = E {sign(X1 −X2) · sign(Y1 − Y2)

× sign(X1 −X3) · sign(Y1 − Y3) · I(Ω12
UL ∧ Ω13

UL)} − (τKendallUL µUL)2

ζLU = E {sign(X1 −X2) · sign(Y1 − Y2)

× sign(X1 −X3) · sign(Y1 − Y3) · I(Ω12
LU ∧ Ω13

LU )} − (τKendallLU µLU )2

ζLL = E {sign(X1 −X2) · sign(Y1 − Y2)

× sign(X1 −X3) · sign(Y1 − Y3) · I(Ω12
LL ∧ Ω13

LL)} − (τKendallLL µLL)2

are all positive. Note that X1, X2 and X3 are i.i.d.

According to Martin and Betensky (2005), the consistent estimators of ζUU , ζUL, ζLU and ζLL

can be obtained by ζ̂UU = (2n ·C2
n−1)

−1∑n
i=1

∑
j 6=i
∑

k 6=i,j
{
sign(Xi−Xj) · sign(Yi−Yj) · I(Ωij

UU ) ·
sign(Xi −Xk) · sign(Yi − Yk) · I(Ωik

UU )
}

, ζ̂UL = (2n · C2
n−1)

−1∑n
i=1

∑
j 6=i
∑

k 6=i,j
{
sign(Xi −Xj) ·

sign(Yi−Yj)·I(Ωij
UL)·sign(Xi−Xk)·sign(Yi−Yk)·I(Ωik

UL)
}

, ζ̂LU = (2n·C2
n−1)

−1∑n
i=1

∑
j 6=i
∑

k 6=i,j
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{
sign(Xi − Xj) · sign(Yi − Yj) · I(Ωij

LU ) · sign(Xi − Xk) · sign(Yi − Yk) · I(Ωik
LU )
}

and ζ̂LL =

(2n ·C2
n−1)

−1∑n
i=1

∑
j 6=i
∑

k 6=i,j
{
sign(Xi −Xj) · sign(Yi − Yj) · I(Ωij

LL) · sign(Xi −Xk) · sign(Yi −
Yk) · I(Ωik

LL)
}

respectively.

2.3 Copula-based estimation approach

Although the non-parametric estimation method has its advantages, e.g., avoiding any kind of

model misspecification, the parametric estimation method is convenient to implement in the em-

pirical study. In the following, we will focus on introducing the parametric copula-based estimation

approach of the local Kendall’s tau framework.

Copula is the function that can join different variables following various distributions, and thus

can be used to characterize the dependence structure between different variables. According to

Sklar’s (1959) Theorem, a bivariate joint cumulative function of two variables can be decomposed

into three components: two marginal cumulative distribution functions and their dependence struc-

ture. Specifically, let F (X,Y ), FX(X) and FY (Y ) represent the joint distribution, the marginal

distribution of variable X, and the marginal distribution of variable Y respectively. Then, F (X,Y )

can be expressed via copula function C and the marginal distributions of X and Y

F (X,Y ) = C(FX(X), FY (Y )) = C(U, V )

where U = FX(X), V = FY (Y ). Its major advantage is that it allows us to separate the dependence

structure from the marginal distributions, and captures the properties of joint distribution that are

invariant under strictly increasing transformations (Embrechts et al. 2002).

Schweizer and Wolff (1981) introduced the copula-based formula of global Kendall’s tau, thus

copula technology also inspires us to propose a copula-based method to estimate local Kendall’s

tau. First, let us recall Schweizer and Wolff’s (1981) formula of global Kendall’s tau: Let C denotes

the copula of (X,Y ), then global Kendall’s tau of X and Y can be calculated by following formula

τ(X,Y ) = 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1 (6)

We can see from above expression that global Kendall’s tau between X and Y is determined by

their dependence structure. Via this formula, we can estimate global Kendall’s tau from parametric

copula directly (Cherubini et al. 2004, p. 126).

As extension of Schweizer and Wolff’s (1981) work, we derive the closed form solutions of

different local Kendall’s tau in terms of copula, which enable us to investigate the rank-based local

dependence between two variables via their global dependence structure directly.

Theorem 1. Let (X,Y ) be a pair of continuous random variables following different distribu-

tions FX(·) and FY (·) respectively, p and q are their quantiles. C denotes the copula of (X,Y ).

Different local Kendall’s tau can be expressed by
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τKendallUU (X,Y ; p, q) =

2

∫ 1

q

∫ 1

p
[2C(u, v)− C(p, v)− C(u, q)− u− v]dC(u, v)

(1− p− q + C(p, q))2
+

1 + p+ q + C(p, q)

1− p− q + C(p, q)

(7)

τKendallUL (X,Y ; p, q) =

2

∫ q

0

∫ 1

p
[2C(u, v)− C(p, v)− v]dC(u, v)

(q − C(p, q))2
(8)

τKendallLU (X,Y ; p, q) =

2

∫ 1

q

∫ p

0
[2C(u, v)− C(u, q)− u]dC(u, v)

(p− C(p, q))2
(9)

τKendallLL (X,Y ; p, q) =

4

∫ q

0

∫ p

0
C(u, v)dC(u, v)

C(p, q)2
− 1 (10)

Proof: See Appendix A.

Corollary 1. When p→ 0 and q → 0, the copula-based formula of upper-upper local Kendall’s

tau reduce to copula-based formula of global Kendall’s tau

lim
p→0

lim
q→0

τKendallUU (X,Y ; p, q) = 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1

Proof: See Appendix B.

Similarly, the formulas of the other three local Kendall’s tau can also reduce to the formula

of global Kendall’s tau, which indicates that our formulas for local Kendall’s tau are different

generalized versions of formula (6).

Let p = q = z, 0 < z < 1, the lower-lower local Kendall’s tau will reduce to the formula of the

so-called cumulative tau that is introduced by Venter (2002)

lim
p→z

lim
q→z

τKendallLL (X,Y ; p, q) = lim
p→z

lim
q→z

4

∫ p

0

∫ q

0
C(u, v)dC(u, v)

C(p, q)2
− 1 =

4

∫ z

0

∫ z

0
C(u, v)dC(u, v)

C(z, z)2
− 1

Therefore, Venter’s (2002) cumulative tau is also a special case of this framework.

From formulas (7)(8)(9)(10), we can infer that local Kendall’s tau between two random variables

X and Y is actually the function of threshold parameters p, q and their underlying copula. In other

words, once the copula between X and Y is chosen, their local dependence is determined by the

threshold parameters p and q. These formulas uncover the relationship between copula function

and Kendall’s tau in different local regions, providing richer dependence information than global

dependence measure, and therefore we could directly use them to study the local dependence

between two variables via their global dependence structure.
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2.4 Relationship between different local Kendall’s tau

The local Kendall’s tau framework contains four different definitions. In fact, there exist certain

relationship among them. For example, τKendallLL is given by

τKendallLL (X,Y ; p, q) = τKendallLL (X,Y | ΩLL : X ≤ F−1X (p), Y ≤ F−1Y (q))

Then, τKendallUL , τKendallLU and τKendallUU can be computed by following transformations

τKendallUL (X,Y ; p, q) = −τKendallLL (−X,Y ; 1− p, q) (11)

τKendallLU (X,Y ; p, q) = −τKendallLL (X,−Y ; p, 1− q) (12)

τKendallUU (X,Y ; p, q) = τKendallLL (−X,−Y ; 1− p, 1− q) (13)

Proof: See Appendix C.

2.5 Extension: Tail dependence measures based on local Kendall’s tau

It is known that the tail dependence coefficient proposed by Ledford and Tawn (1996; 1997) is

a famous measure characterizing extreme dependence between two random variables. From their

formulas shown in (14) and (15), we can see that the main principle of this measure is calculating

the extreme values of conditional probability between two variables. Copula-based formulas of λUU

and λLL are given by

λUU = lim
p→1−

Pr{X > F−1X (p) | Y > F−1Y (p)} = lim
p→1−

1− 2p+ C(p, p)

1− p
(14)

λLL = lim
p→0+

Pr{X ≤ F−1X (p) | Y ≤ F−1Y (p)} = lim
p→0+

C(p, p)

p
(15)

where p represents the quantile of X and Y . λUU and λLL are upper tail dependence coefficient

and lower tail dependence coefficient bounded between 0 and 1. If their values tend to 1, X and

Y exhibit a strong tail dependence, while if their values tend to 0, two variables exhibit weak tail

dependence. Zhang (2008) extended λUU and λLL to total tail dependence along both the main

diagonal and the minor diagonal, which could capture richer dependence information.

Similarly, we study the limits of local Kendall’s tau when two variables tend to their extreme

values respectively, and construct a novel class of tail dependence measures based on local Kendall’s

tau. In what follow, we will introduce its definition and copula-based estimation method.

Definition 3. (Tail dependence measures based on Local Kendall’s tau) X and Y are

two random variables, p and q are their quantiles respectively. The extreme values of different local

Kendall’s tau represent the degree of rank-based tail dependence between two variables, which are

defined by

11



λKendallUU = lim
p→1

τKendallUU (X,Y ; p, p) (16)

λKendallUL = lim
p→1

τKendallUL (X,Y ; p, 1− p) (17)

λKendallLU = lim
p→0

τKendallLU (X,Y ; p, 1− p) (18)

λKendallLL = lim
p→0

τKendallLL (X,Y ; p, p) (19)

where λKendallUU , λKendallUL , λKendallLU and λKendallLL represent upper-upper tail dependence measure,

upper-lower tail dependence measure, lower-upper tail dependence measure and lower-lower tail

dependence measure based on local Kendall’s tau respectively.

We note that, one tail dependence measure in the local dependence framework, λKendallLL , coin-

cides with θτ = limu→0E {sign(X1 −X2) · sign(Y1− Y2) | max(X1, X2, Y1, Y2) ≤ u} proposed by

Asimit et al.(2016), which was used to detect the presence of asymptotic independence/dependence.

However, they just studied whether the value of θτ for different copulas, e.g., Gumbel copula, Stu-

dent’s t copula and Elliptical copula, is positive or not. Since we have introduced the closed form

formulas of different local Kendall’s tau in terms of copula in Theorem 1, we can now use copula

function to calculate the values of λKendallUU , λKendallUL , λKendallLU and λKendallLL via formulas (7)(8)(9)(10)

directly.

An example for FGM copula is given below.

Example 1. Tail dependence for Farlie-Gumbel-Morgenstern copula

Farlie-Gumbel-Morgenstern copula (often abbreviated as “FGM”) is defined as follows

CFGM (u, v, α) = uv + αuv (1− u) (1− v) α ∈ [−1, 1] and (u, v) ∈ [0, 1]

After substituting FGM copula into formulas (7)(8)(9)(10) and (16)(17)(18)(19), we calculate

the tail dependence based on Kendall’s tau of FGM copula 3

λKendallUU = lim
p→1

τKendallUU (X,Y ; p, p) = lim
p→1

2α(p− 1)2

9(1 + αp2)2
= 0

λKendallUL = lim
p→1

τKendallUL (X,Y ; p, 1− p) = lim
p→1

2α(1− p)2

9(1− αp2)2
= 0

λKendallLU = lim
p→0

τKendallLU (X,Y ; p, 1− p) = lim
p→0

2αp2

9(1− α(1− p)2)2
= 0

λKendallLL = lim
p→0

τKendallLL (X,Y ; p, p) = lim
p→0

2αp2

9(1 + α(p− 1)2)2
= 0

From above results, we know that two variables with FGM copula dependence structure tend

3 The detailed computation procedure of the tail dependence based on local Kendall’s tau for FGM copula is
available from the authors upon request.
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to be independence when they tend to extreme values respectively.

Similarly, the tail dependence based on Kendall’s tau of other copulas can also be estimated

by formulas (7)(8)(9)(10) and (16)(17)(18)(19) (if their limits exist). Note that, since the former

measures are bounded between -1 and 1, whereas λUU and λLL are bounded between 0 and 1,

the tail dependence measures based on local Kendall’s tau are not alternatives to tail dependence

coefficients proposed by Ledford and Tawn (1996; 1997).

2.6 Extension to bivariate local Spearman’s rho framework

Besides Kendall’s tau, there is another famous rank correlation coefficient named rho (Spearman

1904, 1906). Kruskal (1958) introduced the population version of global Spearman’s rho: Let

(X1, Y1), (X2, Y2) and (X3, Y3) be three independent realizations of a joint distribution, global

Spearman’s rho is defined by

ρ(X,Y ) = 6P [(X1 −X2) (Y1 − Y3) > 0]− 3 (20)

Note that the vectors (X2, Y3) can also be replaced by (X3, Y2).

Previous researches related with conditional Spearman’s rho, e.g., Schmid and Schmidt (2007)

and Dobric et al. (2013), all define bivariate conditional Spearman’s rho along the main diagonal.

Like exceedance Kendall’s tau, on the one hand, these definitions are not appropriate for measuring

negative dependence between two return series, on the other hand, definitions along the main

diagonal are also too restrictive. Therefore, following Definition 1, we also extend the general local

dependence framework to bivariate Spearman’s rho, and then derive its copula-based formulas.

Definition 2. (The general Local Spearman’s rho framework) Let X and Y be two

independent and continuous random variables following different distributions. Local Spearman’s

rho can be expressed by

ρSpearmanUU (X,Y ; p, q) = ρSpearmanUU (X,Y | ΩUU : X ≥ F−1X (p), Y ≥ F−1Y (q)) (21)

ρSpearmanUL (X,Y ; p, q) = ρSpearmanUL (X,Y | ΩUL : X ≥ F−1X (p), Y ≤ F−1Y (q)) (22)

ρSpearmanLU (X,Y ; p, q) = ρSpearmanLU (X,Y | ΩLU : X ≤ F−1X (p), Y ≥ F−1Y (q)) (23)

ρSpearmanLL (X,Y ; p, q) = ρSpearmanLL (X,Y | ΩLL : X ≤ F−1X (p), Y ≤ F−1Y (q)) (24)

where FX(·) and FY (·) are their marginals with thresholds p and q respectively. 0 ≤ p ≤ 1 and

0 ≤ q ≤ 1. ΩUU , ΩUL, ΩLU and ΩLL are conditional events for different local Spearman’s rho.

Theorem 2. Let (X,Y ) be a pair of random variables following different distributions FX(·) and

FY (·) respectively, p and q are their quantiles. C denotes the copula of (X,Y ). Local Spearman’s

rho can be expressed by
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ρSpearmanUU (X,Y ; p, q) =

6

∫ 1

q

∫ 1

p

[
2uv − (p+ 1)v − (q + 1)u+ pq + 1

]
dC(u, v)

(1− p− q + C(p, q))(1− p− q + pq)
− 3 (25)

ρSpearmanUL (X,Y ; p, q) =

6

∫ q

0

∫ 1

p

[
2uv − qu− (p+ 1)v + q

]
dC(u, v)

q(q − C(p, q))(1− p)
− 3 (26)

ρSpearmanLU (X,Y ; p, q) =

6

∫ 1

q

∫ p

0

[
2uv − (q + 1)u− pv + p

]
dC(u, v)

p(p− C(p, q))(1− q)
− 3 (27)

ρSpearmanLL (X,Y ; p, q) =

6

∫ q

0

∫ p

0

[
2uv − qu− pv

]
dC(u, v)

pqC(p, q)
+ 3 (28)

Proof: See Appendix D.

According to Schweizer and Wolff (1981), the global Spearman’s rho can be expressed by

ρ(X,Y ) = 12

∫ 1

0

∫ 1

0
uvdC(u, v)− 3 (29)

It is not difficult to prove that formula (29) is a special case of formulas (25)(26)(27)(28).

Schmid and Schmidt (2007) proposed the copula-based formula of multivariate conditional

Spearman’s rho. In bivariate case, ρSpearmanLL (X,Y ; p, p) is expressed by

ρSpearmanLL (X,Y ; p, p) =

∫ p

0

∫ p

0
C(u, v)dudv − p4

4

p3

3
− p4

4

(30)

There exists some differences between our copula-based formulas of local Spearman’s rho and

Schmid and Schmidt’s (2007) formula. Specifically, formula (30) focuses on the lower-lower case

and just has one parameter p, meaning that it can just measure lower-lower local dependence along

the main diagonal. But our formulas (25)(26)(27)(28) measure local dependence from four different

perspectives, and have two parameters p and q, which make the region of local Spearman’s rho to

be more flexible.

3 Local dependence surfaces based on Kendall’s tau for some bi-

variate Archimedean copulas

To demonstrate the usefulness of formulas (7)(8)(9)(10) in estimating the theoretical local depen-

dence for a copula function, we use them to draw the theoretical local dependence surfaces for some
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common used bivariate Archimedean copulas, e.g., Clayton copula, Gumbel copula and Frank cop-

ula.4 The calculation procedure is conducted by Matlab.5 In fact, we also try Gaussian copula

and Student’s t copula, but we find that it is hard to calculate their local Kendall’s tau via for-

mulas (7)(8)(9)(10) directly.6 Therefore, we just use some common used Archimedean copulas for

example. For comparison, we also draw empirical local dependence surfaces for data simulated

by these copulas. Specifically, we first use the selected copulas to generate 50000 random samples

respectively.7 Then we compute the empirical local Kendall’s tau of the generated data in different

quadrants. Finally, we draw their corresponding empirical local dependence surfaces. To ensure

we have enough samples when the regions for calculating the empirical local Kendall’s tau are very

small, we restrict the quantiles of X and Y in the interval [0.05,0.95].

Clayton copula is a kind of asymmetric copula, which could just capture lower tail depen-

dence and assumes that the upper tail dependence is zero. Thus, this copula has a L-shaped

dependence structure. It is given by CClayton(u, v; θC) =
[
max(u−θC + v−θC − 1, 0)

]−1/θC , where

θC ∈ [−1, 0]\{0}. Figure 2 shows four local dependence surfaces in different quadrants based on

local Kendall’s tau for Clayton copula with parameter 1.3 (θC = 1.3). We draw its theoretical and

empirical local dependence surfaces respectively, and find that the theoretical local dependence sur-

faces fit well with their corresponding empirical local dependence surfaces in general. The first and

the fourth plots indicate that the local dependence surfaces for data generated by Clayton copula

exhibit significant asymmetric characteristic along the main diagonal. Specifically, the lower-lower

local Kendall’s tau keeps at a relatively high level around 0.4, while the upper-upper local Kendall’s

tau keeps at a low level (less than 0.1). Moreover, we note that the theoretical upper-upper local

dependence exhibits decreasing tendency when X and Y tend to upper extreme values. The second

and the third plots indicate that lower-upper local dependence surface and upper-lower local de-

pendence surface based on local Kendall’s tau for Clayton copula exhibit symmetric characteristic

along the minor diagonal, and both of them keep at a low level. We use the mathematical formula

between global Kendall’s tau and Clayton copula τ = θC/(θC+2) (Chollete et al., 2011) to calculate

its global Kendall’s tau: τ = 0.3939. From Figure 2, we observe that the global Kendall’s tau for

Clayton copula with parameter θC = 1.3 is obviously larger than its upper-upper, upper-lower and

lower-upper local Kendall’s tau. Finally, we note that the upper-lower and lower-upper empirical

local dependence surfaces for Clayton copula fluctuate more dramatically when X and Y tend to

extreme values along the minor diagonal. It is mainly because the sample size in the upper-lower

and lower-upper regions become smaller. If we use rotated Clayton copula (90 degrees), there

will be much more data for calculating local Kendall’s tau in upper-lower region and lower-upper

region, and the fluctuation of the empirical local dependence surfaces will be smaller. In addition,

4 We also study local dependence surfaces for bivariate FGM copula. The results are available from the authors
upon request.

5 The Matlab codes used in this section are available from the authors upon request.
6 Finding the simpler closed form solutions of local Kendall’s tau for Gaussian and Student’s t copulas is the

direction of our future research.
7 We use the internal function provided by Matlab to generate random samples directly.
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we could increase the amount of the simulation data to reduce the fluctuation of the empirical local

dependence surfaces.
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Figure 2. Local dependence surfaces in different quadrants based on Kendall’s tau for Clayton copula.
Note that the smooth curved surfaces in above plots represent theoretical local dependence surfaces based on
local Kendall’s tau. The non-smooth surfaces represent empirical local dependence surfaces based on local
Kendall’s tau.

Gumbel copula is also an asymmetric copula, which could just capture upper tail dependence

and assumes that the lower tail dependence is zero. Hence, Gumbel copula has an J-shaped

dependence structure. It is given by CGumbel(u, v; δG) = exp
(
−
[
(−log(u))δG + (−log(v))δG

]1/δG),
where δG ∈ [1,+∞]. Figure 3 shows the local dependence surfaces in different quadrants based

on local Kendall’s tau for Gumbel copula with parameter 2 (δG = 2). Similar to Clayton copula,

we also draw different theoretical and empirical local dependence surfaces for Gumbel copula.

We can see that, the theoretical local dependence surfaces also fit well with their corresponding

empirical local dependence surfaces. The first and the fourth plots indicate that local Kendall’s tau

based on Gumbel copula also show significant asymmetric characteristic along the main diagonal.

However, the upper-upper local Kendall’s tau of Gumbel copula is larger than its lower-lower local

Kendall’s tau, which is opposite to Clayton copula. We note that the upper-upper local dependence

surface based on Kendall’s tau for Gumbel copula keeps at a relatively high level around 0.4,

whereas the lower-lower local dependence surface keeps at a relatively low level. Similar to Clayton
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copula, the second and the third plots indicate that the lower-upper local Kendall’s tau and upper-

lower local Kendall’s tau based on Gumbel copula also exhibit symmetric characteristic. Besides

the characteristics mentioned above, we also note that lower-lower local Kendall’s tau of Gumbel

copula shows decreasing tendency as the decrease of two variables, which means the lower-lower

local dependence of Gumbel copula becomes weaker when both X and Y tend to lower extreme

values. Finally, using the mathematical formula between global Kendall’s tau and Gumbel copula

τ = 1 − 1/δG (Genest and Rivest, 1993), we calculate its global Kendall’s tau: τ = 0.5. From

Figure 3, we also note that the global Kendall’s tau for Gumbel copula with parameter δG = 2

is obviously larger than its local Kendall’s tau in different quadrants. The reason why the upper-

lower and lower-upper empirical local Kendall’s tau surfaces of Gumbel copula also fluctuate more

dramatically when X and Y tend to extreme values along the minor diagonal is the same as Clayton

copula.
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Figure 3. Local dependence surfaces in different quadrants based on Kendall’s tau for Gumbel copula.
The smooth curved surfaces and non-smooth surfaces represent theoretical and empirical local dependence
surfaces based on local Kendall’s tau respectively.

Frank copula is symmetric both along the main diagonal and the minor diagonal. It is defined

by CFrank(u, v;λ) = − 1

λ
ln

(
1 +

(e−λu − 1)(e−λv − 1)

e−λ − 1

)
, where λ ∈ R, and λ 6= 0. Figure 4 shows

four local Kendall’s tau surfaces in four quadrants for Frank copula with parameter 4 (λ = 4). Its
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local Kendall’s tau surfaces exhibit symmetric characteristic both along the main diagonal and the

minor diagonal. Moreover, four local dependence surfaces all show decreasing tendency when two

variables tend to extreme values.
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Figure 4. Local dependence surfaces in different quadrants based on Kendall’s tau for Frank
copula. The smooth curved surfaces and non-smooth surfaces represent theoretical and empirical
local dependence surfaces based on local Kendall’s tau respectively.

From above examples, we can see that, the copula-based formulas (7)(8)(9)(10) are useful in

estimating the theoretical local Kendall’s tau of a copula function. Although we just use Clayton

copula, Gumbel copula and Frank copula as examples, it is not difficult to infer that theoretical

local Kendall’s tau of the rotated version or a linear combination of these copulas can also be

estimated by formulas (7)(8)(9)(10) directly.

4 An Empirical Study

In this part, we demonstrate the advantages of copula-based local Kendall’s tau relative to global

Kendall’s tau with stock market data. Specifically, we apply copula-based local and global Kendall’s

tau to study the co-movement relationship between U.S. and other international stock markets

respectively, and then compare their performance. Co-movement between stock markets is a kind
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of nonlinear phenomenon. Relative to the linear correlation coefficient, Kendall’s tau is more

appropriate for being used in such situation (Li 2014). Since two stock markets usually exhibit

positive co-movement relationship, we mainly use two special cases of the local Kendall’s tau

framework, upper-upper and lower-lower local Kendall’s tau along the main diagonal, as examples

to study the co-movement between two stock markets under bull market/bull market and bear

market/bear market statuses, respectively.

The data consist of daily closing prices pt for six stock markets from North America, Europe and

Asia, including the Standard & Poor’s 500 Index (S&P500) in the U.S., the S&P/TSX Composite

Index (S&P/TSX) in Canada, the Financial Times Stock Exchange 100 Index (FTSE100) in the

U.K., the Hang Seng Index (HSI) in Hong Kong, the Nikkei 225 Stock Average Index (N225) in

Japan, and the Shanghai Composite Index (SH) in China. The data are obtained from Yahoo

finance over the period January 5, 1998 to July 31, 2017. After deleting all holidays and invalid

data, each series consists of 4252 observations. The daily stock return is calculated by multiplying

the first difference of the natural logarithm of close price by 100: Rt = (ln(pt) − ln(pt−1)) × 100.

As we know, other stock markets, except for Canadian stock market, are all in different time zones

with the U.S. stock market, which will result in the so-called non-synchroneity problem. Since the

empirical study aims to demonstrate the advantages of copula-based local Kendall’s tau relative

to global Kendall’s tau, we just simplify this problem by studying the co-movement relationship

between S&P500 at time t and FTSE100, HSI, N225, SH at time t directly. We use ARMA(p,q)-

GJR-GARCH(m,n)-Skewed student’s t model to characterize all stock return series,8 and then

obtain standardized residual for each return series. We then use probability integral transformation

to transform them to their corresponding empirical cumulative distribution function (ECDF) series,

which are used for estimating the copula dependence structure between different stock returns.

As we know, the mixture copula proposed by Hu (2006) could capture more flexible dependence

structure than a single copula (Eckernkemper 2017). Thus, we use Gumbel copula, rotated Gumbel

copula (180 degrees), Clayton copula, and rotated Clayton copula (180 degrees) to construct four

two-component bivariate mixture copulas to model the dependence structures between different

stock return pairs,9 which could capture several kinds of symmetric and asymmetric dependence

structures. As mentioned in the previous section, it is hard to calculate local Kendall’s tau of

Gaussian copula and Student’s t copula via formulas (7)(8)(9)(10) directly. Therefore, we do not

consider these two copulas in the mixture copula model. These four mixture copulas are named as

Mix1 copula, Mix2 copula, Mix3 copula and Mix4 copula respectively, which are expressed as

CMix1(u, v;ωG, δG, θC) = ωGCGumbel(u, v; δG) + (1− ωG)CClayton(u, v; θC)

8 The detailed estimation results of ARMA(p,q)-GJR-GARCH(m,n)-Skewed student’s t models are available from
the authors upon request.

9 In fact, we also consider several three-component mixture copulas which are constructed by Frank copula,
Clayton copula and Gumbel copula. Although these three-component mixture copulas can improve the likelihood
values, we find that the weights of Frank copula are all very small. Thus, following the suggestion of Cai and Wang
(2014), Frank copula should not be included in the mixture copulas.
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CMix2(u, v;ωG, δrG, θrC) = ωrGCrotated Gumbel(u, v; δrG) + (1− ωrG)Crotated Clayton(u, v; θrC)

CMix3(u, v;ωG, δG, θrG) = ωGCGumbel(u, v; δG) + (1− ωG)Crotated Gumbel(u, v; θrG)

CMix4(u, v;ωC , θC , θrC) = ωCCClayton(u, v; θC) + (1− ωC)Crotated Clayton(u, v; θrC)

where the rotated Gumbel copula (180 degrees) is the mirror image of Gumbel copula along the

main diagonal. It is given by Crotated Gumbel(u, v; δrG) = u + v − 1 + CGumbel(1 − u, 1 − v; δrG),

δrG ∈ [1,+∞]; the rotated Clayton copula (180 degrees) is the mirror image of Clayton copula along

the main diagonal. It is given by Crotated Clayton(u, v; θrC) = u+ v− 1 +CClayton(1− u, 1− v; θrC),

θrC ∈ [−1, 0]\{0}. ωG, ωrG, ωC are weight parameters of the mixture copulas, which all lie in

interval [0, 1].

We use the maximum likelihood estimation (MLE) method to estimate above alternative mix-

ture copulas for different stock return pairs, and then use the minimum Akaike Information Criteria

(AIC) to select the best fitted copulas. Table 1 and 2 report the estimation results and the best

fitted copulas for each stock return pair. The performance of the best fitted mixture copulas is

evaluated by the χ2 goodness-of-fit test (Hu, 2006). In the test, we divided the data into a table

with [8 × 8] cells 10. We merge cells whose expected frequency is 5 or less. We calculate the χ2

statistic via expression: M =
∑8

i=1

∑8
j=1

(Aij−Bij)
2

Bij
. Aij is the number of observed data in cell

(i, j), Bij is the theoretical frequency in cell (i, j) under the assumption that the dependence struc-

ture between two variables is the copula being tested. M is following χ2 distribution with degree of

freedom (k− 1)2 − p− (q− 1), where p represents the number of estimated parameters of different

copulas, and q represents the number of cells that are merged together. The testing results in Table

3 indicate that our previous choices of the best copulas are appropriate.

Before using copula-based global and local Kendall’s tau to study co-movement between U.S.

and other international stock markets, we first calculate empirical global Kendall’s tau of return

pairs S&P500/S&P/TSX, S&P500/FTSE100, S&P500/HSI, S&P500/N225 and S&P500/SH with

the empirical return data.11 From Figure 5, we can see that return series S&P500 and S&P/TSX

exhibit medium degree of global co-movement. S&P500 and FTSE100 exhibit weaker degree of

global co-movement than S&P500/S&P/TSX, but it is not very low (around 0.38). The global

dependence of return pairs S&P500/HSI, S&P500/N225 and S&P500/SH are relatively low, es-

pecially S&P500/SH. But we can not get more co-movement information from analyzing their

empirical global Kendall’s tau.

Next, we use empirical upper-upper and lower-lower local Kendall’s tau along the main diagonal

to further study co-movement between different stock markets. To ensure there exists enough data

10 The number of cells is chosen by following Moore’s rule (Moore 1986), which states that the reasonable number
of cells is 2

5
√
n2, where n is the number of observations. The number of observation in the current example is 4252.

Thus, the number of column and row of the table are all
2
√

2
5
√
n2 ≈ 8.

11 The empirical return data refers to the ECDF series transformed from the standardized residual.
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Table 1: Copula estimation results for stock return pairs S&P500/S&P/TSX, S&P500/FTSE100
and S&P500/HSI.

S&P500/S&P/TSX S&P500/FTSE100 S&P500/HSI

parameters AIC parameters AIC parameters AIC

Mix1 ωG 0.5262 -2906.12 0.6615 -1701.99 0.6369 -267.32
(0.0292) (0.0374) (0.1212)

δG 2.0580 1.6106 1.1386
(0.0592) (0.0393) (0.0319)

θC 1.7040 1.1674 0.4474
(0.0989) (0.1286) (0.1668)

Mix2 ωrG 0.8181 -2921.75 0.6389 -1698.77 0.7503 -262.17
(0.0248) (0.0385) (0.0756)

δrG 1.9258 1.6448 1.1289
(0.0336) (0.0445) (0.0194)

θrC 2.3932 1.0560 0.5925
(0.3132) (0.1187) (0.1904)

Mix3 ωG 0.3088 -2934.75 0.5143 -1716.27 0.4350 -265.04
(0.0360) (0.0482) (0.2092)

δG 2.1377 1.5890 1.1925
(0.1166) (0.0606) (0.1203)

θrG 1.9149 1.6411 1.1482
(0.0460) (0.0322) (0.0712)

Mix4 ωC 0.6362 -2837.65 0.4867 -1663.88 0.6483 -263.76
(0.0248) (0.0810) (0.1050)

θC 1.6882 1.1667 0.2745
(0.0712) (0.0797) (0.0555)

θrC 2.0334 1.0861 0.4711
(0.1483) (0.0726) (0.1551)

Notes: The numbers in parentheses represent standard errors of the estimated parameters. The
bold face numbers represent the minimum AIC values.
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Table 2: Copula estimation results for stock return pairs S&P500/N225 and S&P500/SH.

S&P500/N225 S&P500/SH

parameters AIC parameters AIC

Mix1 ωG 0.6169 -201.55 0.0171 -17.71
(0.1257) (0.0075)

δG 1.1020 10.2276
(0.0240) (5.2550)

θC 0.4317 0.0410
(0.1448) (0.0186)

Mix2 ωrG 0.6461 -202.92 0.9511 -15.83
(0.1318) (0.0924)

δrG 1.1470 1.0275
(0.0332) (0.0098)

θrC 0.2714 0.5472
(0.0983) (1.1839)

Mix3 ωG 0.4661 -201.20 0.9018 -16.53
(0.1666) (0.0831)

δG 1.1088 1.0082
(0.0436) (0.0112)

θrG 1.1726 1.4298
(0.0601) (0.5139)

Mix4 ωC 0.5013 -204.79 0.1162 -14.57
(0.1395) (0.0757)

θC 0.3505 0.5194
(0.1027) (0.3461)

θrC 0.2380 0.0266
(0.0682) (0.0191)

Notes: The numbers in parentheses represent standard errors of the estimated parameters. The
bold face numbers represent the minimum AIC values.
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Table 3: The χ2 goodness-of-fit test results of alternative copulas for each return pair.

Stock return pairs Copulas M statistic Degree of freedom Critical value (95%)

S&P500/S&P/TSX Mix1 copula 58.0334* 45 61.6562
Mix2 copula 56.0729* 45 61.6562

Mix3 copula 53.4794* 45 61.6562
Mix4 copula 72.3124 45 61.6562

S&P500/FTSE100 Mix1 copula 56.9527* 47 64.0011
Mix2 copula 61.0222* 47 64.0011

Mix3 copula 56.9451* 47 64.0011
Mix4 copula 66.0804 47 64.0011

S&P500/HSI Mix1 copula 48.8250* 47 64.0011
Mix2 copula 51.3576* 47 64.0011
Mix3 copula 51.7287* 47 64.0011
Mix4 copula 49.4447* 47 64.0011

S&P500/N225 Mix1 copula 53.1016* 47 64.0011
Mix2 copula 57.8573* 47 64.0011
Mix3 copula 55.9889* 47 64.0011

Mix4 copula 53.0283* 47 64.0011
S&P500/SH Mix1 copula 38.6959* 47 64.0011

Mix2 copula 40.1749* 47 64.0011
Mix3 copula 38.7006* 47 64.0011
Mix4 copula 39.7579* 47 64.0011

Notes: Degrees of freedom in above table are calculated by (k− 1)2 − p− (q− 1) after merging
cells whose expected frequency is 5 or less. * represents the acceptance of the null hypothesis
at 95% confidence level, which means the data is well fitted by the marked copula. The best
fitted copulas selected by AIC are represented in bold face.
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for calculating empirical local Kendall’s tau when two returns are very large or small, we restrict

their quantiles in the interval [0.05,0.95]. Figure 5 shows that the empirical local Kendall’s tau

between different stock markets is not constant, but changing along the main diagonal. Moreover,

empirical local Kendall’s tau is obviously different from empirical global Kendall’s tau, which implies

that global Kendall’s tau might overestimate or underestimate local Kendall’s tau between differ-

ent stock returns. Specifically, for return pairs S&P500/S&P/TSX and S&P500/FTSE100, their

empirical local Kendall’s tau at any quantile is obviously smaller than empirical global Kendall’s

tau. For the left three return pairs, empirical local Kendall’s tau might be larger or smaller than

the empirical global Kendall’s tau.
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Figure 5. Global and Local Kendall’s tau between different stock returns along the main diagonal. The
red and blue dotted lines represent empirical and theoretical global Kendall’s tau for different return pairs
respectively. Note that the empirical global Kendall’s tau and the theoretical global Kendall’s tau are very
close, thus these two lines are very close to each other. The blue smooth lines in intervals [0.05,0.5] and
[0.5,0.95] represent theoretical τKendall

LL and τKendall
UU based on the best fitted copulas respectively. The non-

smooth lines with circles represent empirical local Kendall’s tau along the main diagonal calculated by the
empirical return data.

Since we have already chosen the best fitted copulas for different stock return pairs, we use

these copulas to calculate their theoretical global and local Kendall’s tau via formulas (6) and
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(7)(8)(9)(10) directly.12 Then we draw the curves of their theoretical global and local Kendall’s tau.

We can observe from Figure 5 that, theoretical local Kendall’s tau makes the characteristics of local

dependence between different return series to be more clearer. Specifically, for S&P500/S&P/TSX,

the theoretical local Kendall’s tau is obviously smaller than the theoretical global Kendall’s tau. The

local dependence between S&P500 and S&P/TSX when both of them are in the boom situation is

obvious smaller than their local dependence when both of them are in the crash situation, exhibiting

an asymmetric local dependence pattern. In addition, their local dependence tends to be weaker

as the increase or decrease of returns. Such tendency indicates that, S&P500 and S&P/TSX keep

at a relatively high degree of co-movement when they are in normal situation, while the degree of

co-movement between them becomes weaker as the increase and decrease of returns. We call it the

“inversed V-type” co-movement pattern.

For S&P500/FTSE100, the theoretical local Kendall’s tau is also obviously smaller than the

theoretical global Kendall’s tau, but the curve of the theoretical local Kendall’s tau is very flat,

implying that the degree of co-movement between S&P500 and FTSE100 does not change very

much as the increase or decrease of returns.

For return pairs S&P500/HSI and S&P500/N225, they exhibit the similar co-movement pattern.

Their theoretical local Kendall’s tau are also smaller than theoretical global Kendall’s tau in general.

Compared with S&P500/S&P/TSX, the local co-movement of S&P500/HSI and S&P500/N225

tend to be stronger as the increase or decrease of returns, exhibiting a “V-type” co-movement

pattern. However, they do not exhibit an obvious asymmetric characteristic.

Finally, the co-movement between S&P500 and SH seems very weak. From the global depen-

dence perspective, their theoretical global Kendall’s tau is 0.0312, indicating that there exist very

low degree of dependence between S&P500 and SH. But we note that the global Kendall’s tau un-

derestimate the degree of local co-movement between them, because the theoretical and empirical

local Kendall’s tau are all larger than global Kendall’s tau in general. Moreover, their values tend

to be larger as the increase or decrease of returns, indicating that return pair S&P500/SH also

exhibits a “V-type” co-movement pattern.

Next, we further study local dependence between U.S. and other five international stock markets

when both of them are in adverse market conditions. We calculate their theoretical τKendallLL (along

the main diagonal) at 5% and 10% quantiles respectively. Table 4 compares them with global

Kendall’s tau. We can see that, global Kendall’s tau of S&P500/S&P/TSX and S&P500/FTSE100

are all larger than 0.35. However, their theoretical local Kendall’s tau at 5% and 10% quantiles are

all under 0.35, indicating that local dependence in the lower-lower tail regions for these two stock

return pairs are not as strong as what global Kendall’s tau shows to us. In addition, the theoretical

12 As shown in the previous section, it is easy to draw the curves of the theoretical local Kendall’s tau for Clayton
copula and Gumbel copula via formulas (7-10) directly, and thus it is not difficult to draw the curves of different
theoretical local Kendall’s tau for a mixture copula that is constructed by the linear combination of Gumbel copula
and Clayton copula. The Matlab codes for calculating the theoretical local Kendall’s tau of different mixture copulas
used in the empirical application are available from the authors upon request.
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τKendallLL at 5% and 10% quantiles of S&P500/SH are all larger than their global Kendall’s tau,

implying that local dependence in lower-lower tail regions for S&P500/SH are not as weak as what

global Kendall’s tau shows to us.

Table 4: Comparison of local Kendall’s tau and global Kendall’s tau for different stock return pairs.

Global Kendall’s tau Theoretical τKendallLL

Stock return pairs Empirical Theoretical 5% 10%

S&P500/S&P/TSX 0.4954 0.4935 0.3278 0.3215
S&P500/FTSE100 0.3798 0.3800 0.2472 0.2290
S&P500/HSI 0.1425 0.1441 0.1362 0.1174
S&P500/N225 0.1248 0.1281 0.1298 0.1154
S&P500/SH 0.0256 0.0311 0.0932 0.0703

In sum, we can get following main conclusions via above example: on the one hand, global

Kendall’s tau might overestimate and underestimate the degree of co-movement between two stock

markets when both of them are in the boom or crash situations, on the other hand, copula-based

local Kendall’s tau can uncover richer local co-movement information than global Kendall’s tau.

These information could help us deepen the understanding of the relationship between two stock

markets. Specifically, not only can copula-based local Kendall’s tau characterize the symmetric and

asymmetric co-movement patterns between different stock markets, but also the changing tendency

of co-movement as the increase or decrease of stock returns.

5 Conclusion and Future Work

In this paper, we propose a novel copula-based local Kendall’s tau framework, which could uncover

richer nonlinear local dependence between two financial return series. The copula-based closed

form formulas of different local Kendall’s tau nest the copula-based formula of global Kendall’s

tau, providing a generalized framework for investigating dependence between two return series. We

further extend the copula-based local dependence framework to Spearman’s rho. We demonstrate

the advantages of copula-based local Kendall’s tau relative to global Kendall’s tau with stock

market data. The results indicate that, on the one hand, copula-based global Kendall’s tau may

overestimate or underestimate local dependence between two stock markets, on the other hand,

copula-based local Kendall’s tau can help us uncover richer dependence information than global

Kendall’s tau.

In the empirical study, we did not consider Gaussian copula and Student’s t copula in the

mixture copulas, because it is hard to calculate local Kendall’s tau via formulas (7)(8)(9)(10)

directly for these two copulas. Finding the simpler closed form solutions of local Kendall’s tau

for Gaussian and Student’s t copulas (if there exists) is the direction of our future research. In
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addition, the copula-based local dependence framework can also be applied to Blomqvist’s (1950)

beta and Gini’s Gamma (Nelsen 2006).
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Appendix A: Proof of theorem 1

Assuming that (X1, Y1) and (X2, Y2) are two independent realizations of (X,Y ). According to

expression (1), the population version of upper-upper local Kendall’s tau is expressed by

τKendallUU (X,Y ; p, q) = P
(
(X1 −X2) (Y1 − Y2) > 0 | X1, X2 ≥ F−1X (p), Y1, Y2 ≥ F−1Y (q)

)
− P

(
(X1 −X2) (Y1 − Y2) < 0 | X1, X2 ≥ F−1X (p), Y1, Y2 ≥ F−1Y (q)

)
Since the random variables are continuous, we have

P
(
(X1 −X2) (Y1 − Y2) < 0 | X1, X2 ≥ F−1X (p), Y1, Y2 ≥ F−1Y (q))

= 1− P
(
(X1 −X2) (Y1 − Y2) > 0 | X1, X2 ≥ F−1X (p), Y1, Y2 ≥ F−1Y (q)

)
Therefore

τKendallUU (X,Y ; p, q) = 2P
(
(X1 −X2) (Y1 − Y2) > 0 | X1, X2 ≥ F−1X (p), Y1, Y2 ≥ F−1Y (q)

)
− 1

As we know

P
(
(X1 −X2) (Y1 − Y2) > 0 | X1, X2 ≥ F−1X (p), Y1, Y2 ≥ F−1Y (q)

)
=
P
(
X1 > X2 ≥ F−1X (p), Y1 > Y2 ≥ F−1Y (q)

)
+ P

(
X2 > X1 ≥ F−1X (p), Y2 > Y1 ≥ F−1Y (q)

)
P
(
X1, X2 ≥ F−1X (p), Y1, Y2 ≥ F−1Y (q)

)
We compute the probability of the above expression through integrating over the distribution of

(X1, Y1) (Nelsen 2006, p.159) . First, the left part of the numerator can be expressed by

P
(
X1 > X2 ≥ F−1X (p), Y1 > Y2 ≥ F−1Y (q)

)
=

∫ +∞

F−1
Y (q)

∫ +∞

F−1
X (p)

P
[
F−1X (p) ≤ X2 < x,F−1Y (q) ≤ Y2 < y

]
dC1(FX(x), FY (y))

=

∫ +∞

F−1
Y (q)

∫ +∞

F−1
X (p)

[C2(FX(x), FY (y))− C2(p, FY (y))− C2(FX(x), q) + C2(p, q)] dC1(FX(x), FY (y))
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Similarly, the right part of the numerator can be expressed by

P
(
X2 > X1 ≥ F−1X (p), Y2 > Y1 ≥ F−1Y (q)

)
=

∫ +∞

F−1
Y (q)

∫ +∞

F−1
X (p)

P
[
F−1X (p) ≤ x < X2, F

−1
Y (q) ≤ y < Y2

]
dC1(FX(x), FY (y))

=

∫ +∞

F−1
Y (q)

∫ +∞

F−1
X (p)

[1− FX(x)− FY (y) + C2(FX(x), FY (y))] dC1(FX(x), FY (y))

Finally, we get

P
(
(X1 −X2) (Y1 − Y2) > 0 | X1, X2 ≥ F−1X (p), Y1, Y2 ≥ F−1Y (q)

)

=

∫ +∞

F−1
Y (q)

∫ +∞

F−1
X (p)

[C2(FX(x), FY (y))− C2(p, FY (y))− C2(FX(x), q) + C2(p, q)] dC1(FX(x), FY (y))

P
(
X1, X2 ≥ F−1X (p), Y1, Y2 ≥ F−1Y (q)

)
+

∫ +∞

F−1
Y (q)

∫ +∞

F−1
X (p)

[1− FX(x)− FY (y) + C2(FX(x), FY (y))] dC1(FX(x), FY (y))

P
(
X1, X2 ≥ F−1X (p), Y1, Y2 ≥ F−1Y (q)

)
where P

(
X1, X2 ≥ F−1X (p), Y1, Y2 ≥ F−1Y (q)

)
= (1− p− q + C1(p, q)) (1− p− q + C2(p, q)).

Here, after applying probability integral transforms U = FX(x) and V = FY (y), the above expres-

sion can be expressed by

P
(
(X1 −X2) (Y1 − Y2) > 0 | X1, X2 ≥ F−1X (p), Y1, Y2 ≥ F−1Y (q)

)
=

∫ 1

q

∫ 1

p
[C2(u, v)− C2(p, v)− C2(u, q) + C2(p, q)] dC1(u, v)

(1− p− q + C1(p, q)) (1− p− q + C2(p, q))
+

∫ 1

q

∫ 1

p
[1− u− v + C2(u, v)] dC1(u, v)

(1− p− q + C1(p, q)) (1− p− q + C2(p, q))

Since, C1 = C2 = C, and

τKendallUU (X,Y ; p, q) = 2P
(
(X1 −X2) (Y1 − Y2) > 0 | X1, X2 ≥ F−1X (p), Y1, Y2 ≥ F−1Y (q)

)
− 1

Finally, upper-upper local Kendall’s tau can be computed by following formula

τKendallUU (X,Y ; p, q) =

2

∫ 1

q

∫ 1

p
[2C(u, v)− C(p, v)− C(u, q)− u− v]dC(u, v)

(1− p− q + C(p, q))2
+

1 + p+ q + C(p, q)

1− p− q + C(p, q)

Similarly, we derive the copula-based formulas of other three local Kendall’s tau

τKendallUL (X,Y ; p, q) =

2

∫ q

0

∫ 1

p
[2C(u, v)− C(p, v)− C(u, q)− v]dC(u, v)

(q − C(p, q))2
+
q + C(p, q)

q − C(p, q)
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τKendallLU (X,Y ; p, q) =

2

∫ 1

q

∫ p

0
[2C(u, v)− C(p, v)− C(u, q)− u]dC(u, v)

(p− C(p, q))2
+
p+ C(p, q)

p− C(p, q)

τKendallLL (X,Y ; p, q) =

2

∫ q

0

∫ p

0
[2C(u, v)− C(p, v)− C(u, q)]dC(u, v)

C(p, q)2
+ 1

Since∫ q

0

∫ 1

p
C(u, q)dC(u, v) =

∫ q

0

∫ 1

p
C(u, q)

∂C(u, v)

∂u∂v
dudv =

∫ 1

p
C(u, q)

(∫ q

0

∂C(u, v)

∂u∂v
dv
)
du

=

∫ 1

p
C(u, q)

(∂C(u, q)

∂u
− ∂C(u, 0)

∂u

)
du =

∫ 1

p
C(u, q)

(∂C(u, q)

∂u
− 0
)
du

=

∫ 1

p
C(u, q)dC(u, q) =

1

2

(
C(1, q)2 − C(p, q)2

)
=

1

2

(
q2 − C(p, q)2

)
∫ 1

q

∫ p

0
C(p, v)dC(u, v) =

∫ 1

q

∫ p

0
C(p, v)

∂C(u, v)

∂u∂v
dudv =

∫ 1

q
C(p, v)

(∫ p

0

∂C(u, v)

∂u∂v
du
)
dv

=

∫ 1

q
C(p, v)

(∂C(p, v)

∂v
− ∂C(0, v)

∂v

)
dv

∫ 1

q
C(p, v)

(∂C(p, v)

∂v
− 0
)
dv

=

∫ 1

q
C(p, v)dC(p, v) =

1

2

(
C(p, 1)2 − C(p, q)2

)
=

1

2

(
p2 − C(p, q)2

)
Therefore, the formulas of τKendallUL (X,Y ; p, q) and τKendallLU (X,Y ; p, q) can be further simplified as

τKendallUL (X,Y ; p, q) =

2

∫ q

0

∫ 1

p
[2C(u, v)− C(p, v)− v]dC(u, v)

(q − C(p, q))2

τKendallLU (X,Y ; p, q) =

2

∫ 1

q

∫ p

0
[2C(u, v)− C(u, q)− u]dC(u, v)

(p− C(p, q))2

Similarly,∫ q

0

∫ p

0
C(p, v)dC(u, v) =

∫ q

0

∫ p

0

(
C(p, v)

∂2C(u, v)

∂u∂v
du
)
dv

=

∫ q

0
C(p, v)

(∫ p

0

∂2C(u, v)

∂u∂v
du
)
dv

=

∫ q

0
C(p, v)

(∂C(p, v)

∂v
− ∂C(0, v)

∂v

)
dv

=

∫ q

0
C(p, v)

∂C(p, v)

∂v
dv =

1

2
C(p, q)2 =

∫ q

0

∫ p

0
C(u, q)dC(u, v)

Therefore, the copula-based formula of τKendallLL (X,Y ; p, q) can also be further simplified as
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τKendallLL (X,Y ; p, q) =

2

∫ q

0

∫ p

0

[
2C(u, v)− C(p, v)− C(u, q)

]
dC(u, v)

C(p, q)2
+ 1

=

2

∫ q

0

∫ p

0
2C(u, v)dC(u, v)− 2C(p, q)2

C(p, q)2
+ 1 =

4

∫ q

0

∫ p

0
C(u, v)dC(u, v)

C(p, q)2
− 1

The formulas in Theorem 1 have been proved.

Appendix B: Proof of Corollary 1

From formula (7), we know that

lim
p→0

lim
q→0

τKendallUU (X,Y ; p, q) =

2

∫ 1

0

∫ 1

0

[
2C(u, v)− C(0, v)− C(u, 0)− u− v

]
dC(u, v)

(1 + C(0, 0))2
+

1 + C(0, 0)

1 + C(0, 0)

=

2

∫ 1

0

∫ 1

0
2C(u, v)dC(u, v)− 2

∫ 1

0

∫ 1

0
udC(u, v)− 2

∫ 1

0

∫ 1

0
vdC(u, v)

1
+ 1

Since E(U) = E(V ) = 1/2 (Nelsen 2006, p.160), we have

∫ 1

0

∫ 1

0
udC(u, v) =

∫ 1

0

∫ 1

0
vdC(u, v) =

1

2
.

Therefore,

lim
p→0

lim
q→0

τKendallUU (X,Y ; p, q) = 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1

Appendix C: The proof of equations (11)(12) and (13)

As we know, F−1−X(p) = −F−1X (1− p), therefore

τKendallLL (−X,Y | −X ≤ F−1−X(1− p), Y ≤ F−1Y (q)) = τKendallLL (−X,Y | −X ≤ −F−1X (p), Y ≤ F−1Y (q))

= τKendallUL (−X,Y | X ≥ F−1X (p), Y ≤ F−1Y (q))

= −τKendallUL (X,Y | X ≥ F−1X (p), Y ≤ F−1Y (q))

which proves the equation (11), τKendallUL (X,Y ; p, q) = −τKendallLL (−X,Y ; 1− p, q). Similarly, we can

prove the equations (12) and (13).
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Appendix D: Proof of Theorem 2

Assuming that (X1, Y1), (X2, Y2) and (X3, Y3) are three independence realizations of (X,Y ). There-

fore, X1 and Y1 are joint by copula function C, while X2 and Y3 are joint by independence copula

function C⊥. From Nelsen (2006, p. 167), we know that the expression of ρSpearmanUU (X,Y ; p, q) can

be expressed by

ρSpearmanUU (X,Y ; p, q) = 3P
(
(X1 −X2) (Y1 − Y3) > 0 | X1, X2 ≥ F−1X (p), Y1, Y3 ≥ F−1Y (q)

)
− 3P

(
(X1 −X2) (Y1 − Y3) < 0 | X1, X2 ≥ F−1X (p), Y1, Y3 ≥ F−1Y (q)

)
= 6P

(
(X1 −X2) (Y1 − Y3) > 0 | X1, X2 ≥ F−1X (p), Y1, Y3 ≥ F−1Y (q)

)
− 3

We know

P
(
(X1 −X2) (Y1 − Y3) > 0 | X1, X2 ≥ F−1X (p), Y1, Y2 ≥ F−1Y (q)

)
=
P
(
X1 > X2 ≥ F−1X (p), Y1 > Y3 ≥ F−1Y (q)

)
+ P

(
X2 > X1 > F−1X (p), Y3 > Y1 > F−1Y (q)

)
P
(
X1, X2 ≥ F−1X (p), Y1, Y3 ≥ F−1Y (q)

)
where P

(
X1, X2 ≥ F−1X (p), Y1, Y3 ≥ F−1Y (q)

)
= (1− p− q + C(p, q))(1− p− q + pq).

As we know

P
(
X1 > X2 ≥ F−1X (p), Y1 > Y3 ≥ F−1Y (q)

)
=

∫ +∞

F−1
Y (q)

∫ +∞

F−1
X (p)

P
(
F−1X (p) ≤ X2 < x,F−1Y (q) ≤ Y3 < y

)
dC(FX(x), FY (y))

=

∫ +∞

F−1
Y (q)

∫ +∞

F−1
X (p)

[C⊥(FX(x), FY (y))− C⊥(p, FY (y))− C⊥(FX(x), q) + C⊥(p, q)] dC(FX(x), FY (y))

=

∫ +∞

F−1
Y (q)

∫ +∞

F−1
X (p)

[FX(x)FY (y)− pFY (y)− FX(x)q + pq] dC(FX(x), FY (y))

Similarly, we have

P
(
X2 > X1 ≥ F−1X (p), Y3 > Y1 ≥ F−1Y (q)

)
=

∫ +∞

F−1
Y (q)

∫ +∞

F−1
X (p)

P
(
F−1X (p) ≤ x < X2, F

−1
Y (q) ≤ y < Y3

)
dC(FX(x), FY (y))

=

∫ +∞

F−1
Y (q)

∫ +∞

F−1
X (p)

[1− FX(x)− FY (y) + C⊥(FX(x), FY (y))] dC(FX(x), FY (y))

From the above calculation procedure, we have

P
(
(X1 −X2) (Y1 − Y3) > 0 | X1, X2 ≥ F−1X (p), Y1, Y2 ≥ F−1Y (q)

)

=

∫ +∞

F−1
Y (q)

∫ +∞

F−1
X (p)

[FX(x)FY (y)− pFY (y)− FX(x)q + pq] dC(FX(x), FY (y))

(1− p− q + C(p, q))(1− p− q + pq)
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+

∫ +∞

F−1
Y (q)

∫ +∞

F−1
X (p)

[1− FX(x)− FY (y) + C⊥(FX(x), FY (y))] dC(FX(x), FY (y))

(1− p− q + C(p, q))(1− p− q + pq)

After applying probability integral transform, we finally get the expression of ρSpearmanUU

ρSpearmanUU (X,Y ; p, q) =

6

∫ 1

q

∫ 1

p
[2uv − (p+ 1)v − (q + 1)u+ pq + 1]dC(u, v)

(1− p− q + C(p, q))(1− p− q + pq)
− 3

Similarly, we calculate the formulas of the other three local Spearman’s rho respectively

ρSpearmanUL (X,Y ; p, q) =

6

∫ q

0

∫ 1

p
[2uv − qu− (p+ 1)v + q]dC(u, v)

q(q − C(p, q))(1− p)
− 3

ρSpearmanLU (X,Y ; p, q) =

6

∫ 1

q

∫ p

0
[2uv − (q + 1)u− pv + p]dC(u, v)

p(p− C(p, q))(1− q)
− 3

ρSpearmanLL (X,Y ; p, q) =

6

∫ q

0

∫ p

0
[2uv − qu− pv]dC(u, v)

pqC(p, q)
+ 3
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